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The mild-slope equation is an effective approximation for treating the combined
effects of refraction and diffraction of infinitesimal water waves, for it reduces the
spatial dimension of the linear boundary-value problem from three to two. We extend
this approximation to nonlinear waves up to the second order in wave steepness, in
order to simplify the inherently three-dimensional task. Assuming that the geometrical
complexity is restricted to a finite, though large, horizontal domain, the hybrid-element
method designed earlier for linearized problems is modified for the two-dimensional
elliptic boundary-value problems at the second order. In the special case of a semi-
circular peninsula (or a vertical cylinder on a cliff) in a sea of constant depth, the
solution is analytical. Effects of the angle of incidence are examined for the free-
surface height along the cylinder. For a cylinder standing on a shoal of radially
varying depth, numerical results are discussed.

1. Introduction
The three-dimensional problem of nonlinear diffraction is difficult even for a sea

of constant depth bounded by vertical cliff-like coasts. After several earlier attempts,
the second-order theory for an axially symmetric body was finally completed by
Kim & Yue (1989) who employed a semi-analytical method based on boundary
elements. The special case of a vertical circular cylinder was later solved analytically by
Chau & Eatock Taylor (1992). Their methods of analysis are fully three-dimensional
and have not been extended to nonlinear diffraction and refraction and may be costly
if the bathymetry is non-uniform over many wavelengths.

On the other hand, for infinitesimal waves, the combined diffraction and refraction
by scatterers over a slowly varying bathymetry can be efficiently analysed by the
mild-slope equation (MSE) developed from the linearized theory by Berkhoff (1972).
A special advantage of MSE is that it reduces the boundary-value problem from
three dimensions to two, and hence facilitates numerical computations involving a
large horizontal domain. In the original derivation of Berkhoff (see also Smith &
Sprinks (1975) who derived MSE by weighted averaging via Green’s formula) terms
proportional to the small bed slope ∇h were kept, but those proportional to (∇h)2, ∇2h

were neglected. For applications to steeper bathymetries, various modifications have
been proposed (Kirby 1986; Massel 1993; Chamberlain & Porter 1995; Porter &
Staziker 1995; Miles & Chamberlain 1998; Agnon 1999; Athanassoulis & Belibassakis
1999). In particular, Chamberlain & Porter retain the second-order depth-gradient
terms and show that the modified mild-slope equation has a better accuracy for
scattering by a corrugated seabed of length scale comparable to the surface waves.
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Increased accuracy can be achieved for still steeper bed slopes by including all the
evanescent modes, leading to an infinite set of two-dimensional modified mild-slope
equations coupling all vertical modes (Massel 1993; Porter & Staziker 1995). As far
as we are aware, extensions of the mild-slope approximation to nonlinear problems
are so far limited to basic ideas, but not yet fully implemented (Agnon 1999).

In coastal dynamics there is a need for the prediction of the diffraction of nonlinear
waves over a seabed of depth varying slowly over a large area. Efficient methods
that can lighten the computational tasks in three dimensions are required. In this
paper, we shall extend the theoretical ideas of the mild-slope approximation to
nonlinear diffraction/refraction, so as to simplify the three-dimensional computations.
It will be shown that, at second order, the mild-slope equations are a set of two-
dimensional coupled elliptic and inhomogeneous partial differential equations with
variable coefficients. Application will first be made to the limiting case of a semi-
circular cylinder on a wall in a sea of constant depth, for which the equations
become uncoupled and the problem is solved analytically. For cases of varying
depth, the hybrid-element method of Chen & Mei (1974) for linearized scattering of
infinitesimal waves is modified for the inhomogeneous boundary-value problems. A
numerical example involving radially varying depth is discussed.

2. Perturbation equations
We assume the fluid to be incompressible and inviscid, and the flow irrotational.

Let the velocity field be represented as the gradient of a scalar potential, i.e.
(u, v, w) = ∇3Φ . Incompressibility requires that

∇2
3Φ = ∇2Φ +

∂2Φ

∂z2
= 0, (2.1)

in the fluid, where ∇ and ∇3 stand for two- and three-dimensional gradient operators,
respectively. For small-amplitude waves, i.e. ε ≡ kA � 1, where A is the amplitude of
the incident waves, we expand the free-surface conditions in powers of ε ≡ kA about
z = 0, and obtain the approximate dynamic boundary condition,

gζ +
∂Φ

∂t
+ ζ

∂2Φ

∂t∂z
+ 1

2
(∇3Φ)2 = O(ε3), z = 0, (2.2)

where ζ denotes the vertical displacement of the free surface. The preceding equation
can be combined with the approximate kinematic condition to give,

∂Φ

∂z
+

1

g

∂2Φ

∂t2
= −ζ

g

∂

∂z

(
g

∂Φ

∂z
+

∂2Φ

∂t2

)
− 1

g

∂

∂t
(∇3Φ)2 + O(ε3), z = 0. (2.3)

On the seabed, z = −h(x, y), no flux requires that

∂Φ

∂z
= −∇Φ · ∇h, z = −h(x, y). (2.4)

All lateral boundaries ∂B , including the coast, are assumed to be vertical, so that

∂Φ

∂n
= n · ∇Φ = 0, (x, y) ∈ ∂B. (2.5)

We now introduce the perturbation expansions

Φ = εΦ1 + ε2Φ2 + · · · , ζ = εζ1 + ε2ζ2 + · · · , (2.6)
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into (2.1) to (2.5). At first and second order, both Φ1 and Φ2 satisfy the Laplace
equation in the fluid, (2.4) on the sloping seabed, and (2.5) along all lateral boundaries.
On the still-water free surface, z = 0, the boundary condition for the first-order
potential is homogeneous

g
∂Φ1

∂z
+

∂2Φ1

∂t2
= 0, z = 0, (2.7)

while that for the second-order potential is not

∂Φ2

∂z
+

1

g

∂2Φ2

∂t2
=

1

g2

∂Φ1

∂t

∂

∂z

[
g

(
∂Φ1

∂z

)
+

∂2Φ1

∂t2

]
− 1

g

∂

∂t
(∇3Φ1)

2 , z = 0. (2.8)

The free-surface displacement at first order, ζ1, is related to Φ1 by

ζ1 = −1

g

[
∂Φ1

∂t

]
z=0

, (2.9)

while the second-order correction, ζ2, consists of two parts,

ζ2 = ζ
(1)
2 + ζ

(2)
2 . (2.10)

One part can be immediately calculated from the first-order solution,

ζ
(1)
2 =

[
1

g2

∂Φ1

∂t

∂2Φ1

∂t∂z
− 1

2g
(∇3Φ1)

2

]
z=0

, (2.11)

and the second part depends on the second-order potential Φ2

ζ
(2)
2 =

[
−1

g

∂Φ2

∂t

]
z=0

, (2.12)

whose solution is a major objective of this work.

3. Mild-slope equations
For convenience, we first cite the known result for the first order (Chamberlain &

Porter 1995).

3.1. First-order MSE

We assume the incident wave to be simple-harmonic in time at first order with the
velocity potential

Φ1 = φ e−iωt + ∗, (3.1)

where * denotes the complex conjugate of the preceding term, and ω the wave
frequency.

For vertical lateral boundaries, we take the first-order φ to be

φ = − igη(x, y)

ω

cosh k(z + h)

cosh kh
, (3.2)

where η(x, y) is the surface elevation for ω and k is the wavenumber satisfying the
dispersion relation

ω2 = gk tanh kh. (3.3)

Since (3.2) representing only the propagating mode is exact for a horizontal seabed,
it should be a good approximation for a mildly sloping bed.
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By treating Laplace’s equation as an ordinary differential equation in z and applying
Green’s formula (as in Smith & Sprinks 1975), we obtain the modified mild-slope
equation for the first-order problem. The result by keeping all terms proportional
to ∇h, ∇2h and (∇h)2 is the modified mild-slope equation by Chamberlain & Porter
(1995),

∇ · (CCg∇η) + [k2CCg + gU∇2h + gV (∇h)2]η = 0, (3.4)

where

U =
(sinh 2kh − 2kh cosh 2kh)

4 cosh2 (kh) (2kh + sinh 2kh)
, (3.5)

V =
k[(2kh)4 + 4(2kh)3 sinh 2kh − 9 sinh 2kh sinh 4kh]

12 cosh2(kh)(2kh + sinh 2kh)3

+
k[kh(kh + sinh 2kh)(cosh2 2kh − 2 cosh 2kh + 3)]

cosh2(kh)(2kh + sinh 2kh)3
, (3.6)

C is the phase velocity

C =
ω

k
, (3.7)

and Cg is the group velocity,

Cg =
C

2

(
1 +

2kh

sinh 2kh

)
. (3.8)

Note that while no terms related to the gradients of depth are omitted, the assumed
potential (3.2) is not exact and does not satisfy the bottom condition. The above
approximation is therefore still restricted to mild slope.

Equation (3.4) with the appropriate radiation condition can be solved numerically
by the hybrid element method of Chen & Mei (1974) if the complex geometry is
limited to a finite near field. Afterwards, the first-order free-surface elevation is given
by

ζ1 = ηe−iωt + ∗. (3.9)

With these results, the following part of the second-order free-surface displacement
can be computed immediately,

ζ
(1)
2 = η

(1)
2,0 +

(
η

(1)
2,2e

−i2ωt + ∗
)
. (3.10)

In particular, η
(1)
2,0 represents the mean sea-level set-up/setdown

η
(1)
2,0 =

ω2

g
|η|2 − g

ω2
|∇η|2, (3.11)

and η
(1)
2,2 represents the second-harmonic amplitude due directly to quadratic

interactions of the first-order motion

η
(1)
2,2 =

3ω2

2g
η2 +

g

2ω2
(∇η)2 . (3.12)

Solution of the remaining second harmonic,

ζ
(2)
2 = η

(2)
22 e−2iωt + ∗, (3.13)

must await the solution of Φ2.
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3.2. Second-order MSE

At second-order, the inhomogeneous free-surface boundary condition, (2.8), can be
rewritten as follows

∂Φ2

∂z
+

1

g

∂2Φ2

∂t2
= F e−2iωt + ∗, (3.14)

where

F = β̂ηη + β̄∇η · ∇η, (3.15)

with

β̂ =
igk2

ω
− 3iω3

g
, β̄ = −2ig

ω
. (3.16)

Expressing the second-order potential in the form

Φ2 = ψe−2iωt + ∗, (3.17)

it is easy to see that ψ must satisfy ∂ψ/∂n = 0 along lateral boundaries, (2.4) on the
seabed and

∂ψ

∂z
− 4ω2

g
ψ = F, z = 0 (3.18)

on the free surface.
Similar to the first-order mild-slope approximation of Porter & Staziker (1995), we

express the solution for ψ as the sum of all vertical eigenmodes in a sea of constant
depth

ψ = − ig

2ω

∞∑

=0

ξ


cos κ
(z + h)

cos κ
h
, (3.19)

where κ
, 
 = 1, 2, . . . are the real roots of the transcendental equation

−4ω2 = gκ
 tan κ
h,
(

 − 1

2

)
π � κ
h � 
π, (3.20)

and κ0 = −iκ̂0 is imaginary with κ̂0 being the real root of the dispersion equation

4ω2 = gκ̂0 tanh κ̂0h. (3.21)

Physically, the term with the subscript m =0 corresponds to the propagating
mode while those with m � 1 correspond to the evanescent modes. Because of the
inhomogeneous condition (3.18) on the free surface, all vertical modes are required,
unlike the first-order potential in (3.2). Employing the procedure of weighted vertical
averaging via Green’s formula, as outlined in Appendix A, we obtain a matrix
equation coupling all second-order modal amplitudes ξ
:

∞∑

=0

{∇ · (Am,
∇ξ
) + Bm,
∇h · ∇ξ
 + Cm,
ξ
} = −i2ωF, m = 0, 1, 2, 3, . . . . (3.22)

The coefficient matrices defined below are functions of (x, y),

Am,
 = δm
A
,
 =
gh

2 cos2 κ
h

(
1 +

sin 2κ
h

2κ
h

)
δm
, (3.23)

Bm,
 =

{
0 for m = 
,

g(Um,
 − U
,m) for m �= 
,
(3.24)
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Figure 1. Near (ΩA) and far (ΩF ) fields. Variable bathymetry and non-straight coastal
boundaries are in (ΩA) behind the semi-circle r = a.

with

Um,
 =


sin 2κmh − 2κmh cos 2κmh

4 cos2 (κmh) (2κmh + sin 2κmh)
if m = 
,

− κ2



cos κmh cos κ
h
(
κ2


 − κ2
m

) , if m �= 
,

(3.25)

Cm,
 = −κ2
mAm,
 + gUm,
∇2h + gVm,
 (∇h)2 , (3.26)

with

Vm,m =
κm[−(2κmh)4 − 4(2κmh)3 sin 2κmh − 9 sin(2κmh) sin 4κmh]

12 cos2(κmh)(2κmh + sin 2κmh)3

+
κm[κmh(κmh + sin 2κmh)(cos2 2κmh − 2 cos 2κmh + 3)]

cos2(κmh)(2κmh + sin 2κmh)3
(3.27)

for m = 
, and

Vm,
 =
−2κ
 sec κmh sec κ
h

(2κ
h + sin 2κ
h)

[
4κ2


 κ
2
m +

(
κ4


 − κ4
m

)
sin2 κ
h

](
κ2


 − κ2
m

)2
(3.28)

for m �= 
. These coefficients are equivalent to those in the modified system of mild-
slope equations of Porter & Staziker (1995) for linearized waves and F = 0, after
changing 2ω to ω. We have now reduced the second-order task to the solution of
coupled two-dimensional elliptic problems, subject to certain boundary conditions.

In the region of constant depth, terms multiplied by Bm
 vanish, while Cm,
 is also
a diagonal matrix. Equations (3.22) are no longer coupled and reduce to

∇2ξ
 − κ2

 ξ
 = −i

2ω

A
,


F, 
 = 0, 1, 2, . . . . (3.29)

For coastal waters where only the complexities of local topography and coastline
are of major concern, we can simplify the geometry in areas far from the local region.
With reference to figure 1, let us divide the horizontal fluid domain into two regions :
the near field ΩA in which the bathymetry and coastal boundary are complex, and the
far field ΩF where the depth is constant and the coastline straight. The two fields are
separated by a semi-circle ∂A of radius r = a. For the first-order problem, the far-field
solution in ΩF can be represented analytically as an eigenfunction expansion. In the
near field ΩA, discrete solutions will be sought via finite elements. The unknown
nodal coefficients in ΩA and the expansion coefficients in ΩF will be found together
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by Galerkin’s method, subject to the continuity of η and ∂η/∂r at r = a. This is
the idea of the hybrid-element method developed for linearized wave problems by
Chen & Mei (1974) and Bai & Yeung (1974) for two dimensions and Yue, Chen &
Mei (1978) for three dimensions. The method will be extended to the second-order
problem here with the requirement of continuity of ξ
 and ∂ξ
/∂r at r = a.

4. Analytical representations in the far field
As a part of the hybrid-element analysis, let us first present the analytical

representations in the far field ΩF where the depth is constant and the coastline
is along the x-axis.

4.1. First order

In the far field, the first-order wave consists of the incident, reflected and scattered
waves given together by

(η)ΩF
= η(T ) + η(S), (4.1)

where

η(T ) = 1
2
A exp(ikr cos (θ − θI )) + 1

2
A exp(ikr cos (θ + θI )). (4.2)

is the sum of incident and reflected waves in the presence of the straight coast, with
θI being the incidence angle. The first-order scattered wave η(S) is formally

η(S) =

∞∑
m=0

εmimαmHm(kr) cos mθ, (4.3)

where εm is the Jacobi symbol, being 1 for m =0 and 2 for m =1, 2, 3, . . . ,

Hm(kr) ≡ H (1)
m (kr) is a Hankel function of the first kind, and the coefficients

αm, m =0, 1, 2, . . . , are as yet unknown.
In the near field of complex bathymetry and coastline, discrete finite elements

are used. The coupled problems of near and far fields are solved numerically via
a variational principle as in Chen & Mei (1974) as described by Houston (1981).
Afterwards the nodal values of η in the near field and the coefficients αm of the far
field are found.

4.2. Second order

4.2.1. The forcing function F

Referring to (3.15), F contains quadratic products of the first-order waves and can
be decomposed as follows

F = P + Q (4.4)

where P denotes the part associated with the self- and cross-interactions of progressive
waves (incident and reflected waves),

P = β̂η(T )η(T ) + β̄∇η(T ) · ∇η(T ), (4.5)

and

Q = β̂
[
2η(T ) + η(S)

]
η(S) + β̄

[
2∇η(T ) + ∇η(S)

]
· ∇η(S) (4.6)

is the part due to cross-interactions between the plane progressive waves and the
scattered waves, and the self-interaction of the scattered waves.

By straightforward calculations, we obtain

P = M + N = 1
4
A2(β̂ − β̄k2)[exp(i2kr cos(θ − θI )) + exp(i2kr cos(θ + θI ))]

+ 1
2
A2[β̂ − β̄k2 cos(2θI )]exp(i2kr cos θI cos θ ). (4.7)



144 M.-Y. Chen and C. C. Mei

Clearly, the first line,

M = 1
4
A2(β̂ − β̄k2)[exp(i2kr cos(θ − θI )) + exp(i2kr cos(θ + θI ))], (4.8)

represents a pair of obliquely incident and reflected plane waves of wavenumber 2k,
and the second line,

N = 1
2
A2[β̂ − β̄k2 cos(2θI )]exp(i2kr cos θI cos θ ), (4.9)

is a plane incident wave of wavenumber 2k cos θI propagating along the coastline.
To calculate the forcing function Q, we first represent the first-order progressive

wave as a partial wave expansion

η(T ) =

∞∑
m=−∞

Tme(imθ) with Tm(r) = AimJm (kr) cos mθI , (4.10)

and the first-order scattered waves as

η(S) =

∞∑
m=−∞

Smeimθ where Sm (r) = imαmHm (kr) (4.11)

where the coefficients αm are to be solved by the hybrid-element method. Because of
the no flux condition on the straight coast,

1

r

∂
(
η(T ), η(S)

)
∂θ

= 0, θ = 0, π, (4.12)

αm, Tm, Sm must be even in m.
We now calculate Q according to (4.6). A typical cross-product in (4.6) is of the

form

η(T )η(S) =

∞∑
m=−∞

Tmeimθ

∞∑
n=−∞

Sne
inθ =

∞∑
m=−∞

[ ∞∑
n=−∞

Tm−nSn

]
eimθ . (4.13)

It follows that Q can be expressed as a Fourier series

Q =

∞∑
m=−∞

Qmeimθ =

∞∑
m=0

εmQm (r) cos mθ, (4.14)

with

Qm =

∞∑
n=−∞

{[
β̂ − n (m − n)

r2
β̄

]
Sn (2Tm−n +Sm−n) + β̄

∂Sn

∂r

(
2
∂Tm−n

∂r
+

∂Sm−n

∂r

)}
. (4.15)

4.2.2. Decomposition of the far-field solution

In accordance with the form of the forcing term, the second-order response (ξ
)ΩF

defined by (3.19) can be separated into three parts,

(ξ
)ΩF
= ξP


 + ξ
Q

 + ξH


 . (4.16)

The first part, ξP

 , is the direct response to P. Thus, it satisfies the following

inhomogeneous equation(
∇2 − κ2




)
ξP

 = −i

2ωP
A
,


, 
 = 0, 1, 2, 3, . . . . (4.17)

The above decomposition is not unique. It will be shown in the next subsection that
the solution is just the sum of three Stokes’ waves.
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The second part, ξ
Q

 , is the response to forcing by Q and is required to satisfy the

inhomogeneous equation(
∇2 − κ2




)
ξ

Q

 = −i

2ωQ
A
,


, 
 = 0, 1, 2, 3, . . . , (4.18)

the no-flux condition along the straight coast

∂ξ
Q



∂θ
= 0, r > a; θ = 0, θ = π, 
 = 0, 1, 2, 3, . . . , (4.19)

and along the semi-circle r = a

∂ξ
Q



∂r
= 0, r = a, 0 � θ � π, 
 = 0, 1, 2, 3, . . . . (4.20)

This condition is chosen for convenience. For the evanescent modes, 
 =1, 2, 3, . . . ,

ξ
Q

 diminishes to zero at large enough r . For the propagating mode, 
 =0, ξ

Q
0 must

satisfy the weak (integral) radiation condition at infinity owing to the slow attenuation
of Q. We shall call both ξP


 and ξ
Q

 the forced waves.

Finally, ξH

 is the solution to the homogeneous Helmholtz equation(

∇2 − κ2



)
ξH

 = 0, 
 = 0, 1, 2, 3, . . . , (4.21)

and the no-flux condition along the straight coast,

∂ξH



∂θ
= 0, r > a, θ = 0 θ = π, 
 = 0, 1, 2, 3, . . . . (4.22)

In addition, ξH

 must satisfy the usual (strong) radiation condition at infinity. To be

referred to as the free wave, the formal solution ξH

 is immediate

ξH

 =

∞∑
m=0

εmα̂
,mKm (κ
r) cos mθ, 
 = 0, 1, 2, 3, . . . , (4.23)

where Km is the modified Bessel function of the second kind of order m. For

 = 0, κ0 = −iκ̂0 is imaginary and Km(κ0r) is proportional to H (1)

m (κ̂0r). The unknown
coefficients α̂
,m will be found jointly with the discrete solution in the near field by
the hybrid-element analysis to be described shortly, which requires the continuity of
potentials and their radial derivatives along r = a.

The solutions for ξP

 and ξ

Q

 can be obtained explicitly, as shown below.

4.2.3. Response ξP

 to forcing P by progressive waves

It is easy to derive from (4.17) that

ξP

 = ξ I


 + ξR

 + ξ IR


 , 
 = 0, 1, 2, 3, . . . (4.24)

where

ξ I

 = LM


 exp(i2kr cos (θ − θI )), ξR

 = LM


 exp(i2kr cos (θ + θI )),

ξ IR

 = LN


 exp(i2kr cos θI cos θ), (4.25)

with

LM

 =

2iω

A
,


A2

4

(β̂ − β̄k2)

4k2 + κ2



, LN

 =

2iω

A
,


A2

2

[β̂ − β̄k2 cos(2θI )]

(2k cos θI )
2 + κ2




. (4.26)
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Substituting (4.25) into (3.19), we obtain the corresponding second-order potentials
ΦI

2 , ΦR
2 and ΦIR

2 ,(
ΦI

2

ΦR
2

)
=

[ ∞∑

=0

g

A
,


(
4k2 + κ2




) cos κ
(z + h)

cos κ
h

]

× (β̂ − β̄k2)
A2

4
exp(i2kr cos (θ ∓ θI ) − i2ωt) + ∗, (4.27)

and

ΦIR
2 =

[ ∞∑

=0

g

A
,


(
(2k cos θI )2 + κ2




) cos κ
(z + h)

cos κ
h

]

× (β̂ − β̄k2 cos 2θI )
A2

2
exp(i2kr cos θI cos θ − i2ωt) + ∗. (4.28)

For normal incidence θI = 3π/2, the second-harmonic potential ΦIR
2 becomes

independent of (x, y, z) (or r, θ, z); the associated second harmonic pressure persists
for all depth down to the seabed and can induce microseisms, as shown first by
Longuet-Higgins (1950) for a pure standing wave in deep water on a straight coast.

In Appendix B, it is shown that ΦI
2 , ΦR

2 and ΦIR
2 are just the series expansions of

the second-order part of the classical Stokes waves. (Strictly speaking, the classical
Stokes wave is a single wave train. The three-term result here is the second-order part
of an obliquely incident and reflected wave system.) While the Stokes forms are more
compact, the series forms here are more convenient for later computations.

4.2.4. Response ξ
Q

 to forcing by Q

To solve the inhomogeneous problem for each ξ
Q

 , we shall employ two-dimensional

Green’s functions, G
(r, θ; r0, θ0), described in Appendix C. By Green’s theorem, the
boundary conditions and the reciprocity of Green’s functions, we find at any field
point (r, θ),

ξ
Q

 (r, θ) =

∫ ∞

a

r0 dr0

∫ π

0

dθ0

[
−i

2ωQ (r0, θ0)

A
,


] ∞∑
m=0

εm

π
cos mθ cos mθ0Km (κ
r>)

×
[

I ′
m (κ
a)

K ′
m (κ
a)

Km (κ
r<) − Im (κ
r<)

]
, 
 = 0, 1, 2, 3, . . . . (4.29)

where

r< = min(r, r0), r> = max(r, r0). (4.30)

The series above is the Green function G
(r, θ; r0, θ0). Use has been made of the facts
that (i) for 
 = 1, 2, 3, . . . , the evanescent modes die out exponentially at infinity, and
(ii) for 
 = 0, the propagating mode satisfies the weak radiation condition, i.e. the
integral below vanishes in the limit of large r ,∫

∂Ω∞

(
ξ0

∂G0

∂n
− G0

∂ξ0

∂n

)
dS = O

(
1√
r

)
→ 0, r → ∞. (4.31)

Verification of this result is similar to that given in Mei (1989, p. 664). Using the
Fourier expansion (4.14) for Q (r, θ), the orthogonality of cosines, and the Wronskian
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identity of Bessel functions, we obtain the value on the circle r = a,

ξ
Q

 (a, θ) =

∞∑
m=0

εm

κ
a
cos (mθ)

∫ ∞

a

r0 dr0

[
−i

2ωQm (r0)

A
,


]
Km (κ
r0)

K ′
m (κ
a)

, 
 = 0, 1, 2, 3, . . . ,

(4.32)

which is needed to calculate the finite-element solution inside ΩA. The numerical
evaluation of the integral above can be expedited by the scheme of Chau & Eatock
Taylor (1992).

In summary, the second-order solution in the far-field is known analytically except
for the unknown coefficients α̂
,m of the second-order free wave.

5. Hybrid-element solution
In the near field ΩA of complex geometry, the amplitudes ξ
(x, y) (without

decomposition) satisfy (3.22) where the forcing function F (x, y) is known at every
nodal point from the numerical solution of the first-order problem. The no-flux
condition must be imposed on the lateral boundary ∂B which is the union of the
complex coastline (peninsula etc.),(

∂ξ


∂n

)
ΩA

= 0 on ∂B, 
 = 0, 1, 2, 3, . . . , (5.1)

In addition we require the continuity of pressure along and flux across the semi-circle
∂A : (r = a, 0 � θ � π)

(ξ
)ΩA
= ξP


 + ξ
Q

 + ξH


 , r = a, 
 = 0, 1, 2, 3, . . . , (5.2)(
∂ξ


∂r

)
ΩA

=
∂ξP




∂r
+

∂ξH



∂r
, r = a, 
 = 0, 1, 2, 3, . . . . (5.3)

Use has been made of (4.20). These conditions are imposed on the nodal points along
the semicircle. Recall that the far-field solutions ξP


 , ξ
Q

 and ξH


 are given by (4.24),
(4.32) and (4.23), the last of which still contains the unknown coefficients α̂
,m.

5.1. Finite-element analysis

Equation (3.22) is first truncated after a finite number of Nξ + 1 modes; that is,
(
, m) = 0, 1, . . . , Nξ . Afterwards we applied the method of weighted residuals and
form the integrals for the truncated equation∫∫

ΩA

{
−

Nξ∑

=0

[∇ · (Am,
∇ξ
) + Bm,
∇h · ∇ξ
 + Cm,
ξ
] = i2ωF

}
W dΩ, (5.4)

where W is a weighting function to be chosen shortly. By partial integration, and the
use of boundary conditions (5.1) and (5.3), the preceding equation becomes∫∫

ΩA

[
Nξ∑

=0

(Am,
∇ξ
 · ∇W − Bm,
W∇h · ∇ξ
 − Cm,
ξ
W)

]
dΩ

=

∫ π

0

WAm,m

(
∂ξP

m

∂r
+

∂ξH
m

∂r

)
a dθ +

∫∫
ΩA

i2ωFWdΩ, m = 0, 1, 2, 3, . . . , Nξ . (5.5)

Use has been made of (3.23) where A
,m is diagonal.
Now the domain ΩA is discretized to an assemblage of three-node triangular

elements (
e) with a total of NE elements and NP nodes, among which NB boundary
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nodes are designated to be at the end of the sequence, and are labelled as nodes
NP − NB + 1 to NP . The unknown variable ξ
 is replaced by

ξ
 =

NP∑
n=1

ξ
,nWn(x, y), 
 = 0, 1, 2, 3, . . . , (5.6)

where ξ
,n denotes the nth unknown nodal coefficient of ξ
 and Wn the global
weighting function. In addition, we choose Wτ with τ =1, 2, 3, . . . , Np to be the
weighting function W in (5.5). Accordingly, (5.5) is approximated as

Nξ∑

=0

NP∑
n=1

ξ
,n

{
NE∑


e=1

∫∫

e

[(Am,
∇Wn · ∇Wτ − Bm,
Wτ ∇h · ∇Wn − Cm,
WnWτ )] dΩ

}

−
∫ π

0

WτAm,m

∂ξH
m

∂r
a dθ =

∫ π

0

WτAm,m

∂ξP
m

∂r
a dθ +

NE∑
Ωe=1

∫∫
Ωe

i2ωFWτ dΩ,

m = 0, 1, 2, . . . , Nξ , τ = 1, 2, . . . , Np. (5.7)

Furthermore, the Fourier series expansion in the free wave ξH

 , (4.23), is truncated

after Nα̂ + 1 terms and also the dummy index m for the Fourier series summation is
changed to p. The preceding equation becomes

Nξ∑

=0

NP∑
n=1

ξ
,n

{
NE∑


e=1

∫∫

e

(Am,
∇Wn · ∇Wτ − Bm,
Wτ ∇h · ∇Wn − Cm,
WnWτ ) dΩ

}

−
Nα̂∑

p=0

εpα̂m,p

{
[aκmAm,mK ′

p(κma)]

∫ π

0

Wτ cospθ dθ

}
= i2kaAm,mLM

m

∫ π

o

Wτ [cos(θ − θI )exp(i2ka cos(θ − θI )) + cos(θ + θI )

× exp(i2ka cos(θ +θI ))] dθ +i2kaAm,m cosθIL
N
m

∫ π

0

Wτexp(i2ka cosθI cos θ ) cos θ dθ

+

NE∑

e=1

i2ω

∫∫

e

FWτ dΩ, m = 0, 1, 2, . . . , Nξ , τ = 1, 2, . . . , Np, (5.8)

after using the expression of ξP

 (cf. (4.25)).

Let us introduce the following abbreviations,

K(m,
)
τ,n =

NE∑

e=1

∫∫

e

(Am,
∇Wn · ∇Wτ − Bm,
Wτ ∇h · ∇Wn − Cm,
WnWτ ) dΩ, (5.9)

K̂(m,m)
τ,p = −εpaκmAm,mK ′

p(κma)

∫ π

0

Wτ cos pθ dθ, (5.10)

Y(m)
τ = i2kaAm,mLM

m

∫ π

0

Wτ [cos(θ − θI )exp(i2ka cos(θ − θI ))

+ cos(θ + θI )exp(i2ka cos(θ + θI ))] dθ + i2kaAm,m cos θIL
N
m

×
∫ π

0

Wτexp(i2ka cos θI cos θ) cos θ dθ+

NE∑

e=1

i2ω

∫∫

e

FWτ dΩ, (5.11)
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where all the integrals above are evaluated numerically. Equation (5.8) can then be
expressed more compactly as

Nξ∑

=0

NP∑
n=1

ξ
,nK(m,
)
τ,n +

Nα̂∑
p=0

α̂m,pK̂(m,m)
τ,p = Y(m)

τ , m = 0, 1, 2, . . . , Nξ , τ = 1, 2, . . . , NP .

(5.12)

Since m = 0, 1, . . . , Nξ and τ = 1, 2, . . . , NP , these constitute (Nξ + 1) × NP equati
ons. There are, however, the same number of unknown nodal coefficients plus (Nξ +
1) × (Nα̂ +1) unknown free-wave coefficients α̂
,m. The remaining equations are found
from the matching condition (5.2) after using (5.6) and (4.23)

−
NP∑
n=1

ξ
,nWn +

Nα̂∑
p=0

εpα̂
,pKp (κ
a) cos pθ = −ξP

 − ξ

Q

 , 
 = 0, 1, 2, . . . , Nξ . (5.13)

Let us multiply (5.13) by [εqA
,
κ
aK ′
q(κ
a) cos qθ] with q =0, 1, 2, . . . , Nα̂ and

integrate over (0 � θ � π). Since∫ π

0

cos pθ cos qθ dθ = 0 when p �= q, (5.14)

we obtain[
NP∑
n=1

Ǩ(
,
)
q,n ξ
,n

]
+ K̃(
,
)

q,q α̂
,q = Ỹ(
)
q , 
 = 0, 1, 2, . . . , Nξ , q = 0, 1, 2, . . . , Nα̂, (5.15)

where

Ǩ(
,
)
q,n = −εqA
,
κ
aK ′

q (κ
a)

∫ π

0

Wn cos qθ dθ,

K̃(
,
)
q,q = ε2

qA
,
κ
aK ′
q (κ
a) Kq (κ
a)

∫ π

0

cos2 qθ dθ = εqA
,
κ
aK ′
q (κ
a) Kq (κ
a) π

and

Ỹ(
)
q = −εqA
,
κ
aK ′

q (κ
a)

∫ π

0

(
ξP

 + ξ

Q



)
cos qθ dθ.

The integrals Ǩ(
,
)
q,n and Ỹ(
)

q can be evaluated numerically.
Combining (5.12) and (5.15), we obtain the global matrix equation

�(0,0) �̂(0,0) · · · �(0,
) [0] · · · �(0,Nξ ) [0]

�̌(0,0) �̃(0,0) · · · [0] [0] · · · [0] [0]
...

... · · ·
...

... · · ·
...

...

�(
,0) [0] · · · �(
,
) �̂(
,
) · · · �(
,Nξ ) [0]

[0] [0] · · · �̌(
,
) �̃(
,
) · · · [0] [0]
...

... · · ·
...

... · · ·
...

...

�(Nξ ,0) [0] · · · �(Nξ ,
) [0] · · · �(Nξ ,Nξ ) �̂(Nξ ,Nξ )

[0] [0] · · · [0] [0] · · · �̌(Nξ ,Nξ ) �̃(Nξ ,Nξ )





X(0)

X̂(0)

...
X(
)

X̂(
)

...
X(Nξ )

X̂(Nξ )


=



Y(0)

Ỹ(0)

...
Y(m)

Ỹ(m)

...
Y(Nξ )

Ỹ(Nξ )


(5.16)
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where the unknown vectors are defined by

X(
) =


ξ
,1

...
ξ
,n

...
ξ
,NP

, X̂(
) =


α̂
,0

...
α̂
,q

...
α̂
,Nα̂

, (5.17)

and the forcing vectors by

Y(m) =


Y(m)

1
...

Y(m)
τ

...

Y(m)
NP

, Ỹ(m) =



Ỹ(m)
0
...

Ỹ(m)
q

...

Ỹ(m)
Nα̂

. (5.18)

The entries for �(m,
), �̂(m,
) and �̌(
,
) are K(m,
)
τ,n , K̂(m,
)

τ,p and Ǩ(
,
)
q,n , respectively.

The last matrix �̃(
,
) is diagonal with entries K̃(
,
)
q,q . These matrix equations are

solved numerically by using the UC Berkeley program Distributed SuperLU which
is designed for distributed memory parallel processors, using MPI for interprocess
communications. In addition, the Domb–Sykes extrapolation scheme is used to limit
the number of evanescent modes Nξ .

In the limit of constant depth everywhere, the above matrix equation can be
separated into Nξ + 1 uncoupled matrix equations as follows,[

�(m,m) �̂(m,m)

�̌(m,m) �̃(m,m)

] [
X(m)

X̂(m)

]
=

[
Y(m)

Ỹ(m)

]
, m = 0, 1, 2, 3, . . . , Nξ . (5.19)

Before discussing results from finite-element computations, let us examine a special
case of constant depth.

6. Semicircular peninsula on constant depth
6.1. Analytical solution

As an application, we consider the limiting case of a semi-circular vertical cylinder
(peninsula) of radius a attached to a straight coast. The sea depth is constant
everywhere. Now there is no need for finite elements; region ΩF corresponds to
the entire sea. The problem can, of course, be solved by combining the method of
images and the three-dimensional methods of Kim & Yue (1989) or of Chau &
Eatock Taylor (1992). In addition to providing information on the effects of incidence
angles, this example serves to show that the mild-slope-equation approach is a two-
dimensional alternative to Chau & Eatock Taylor. The analytical results are also useful
as benchmarks for checking the more numerical tasks involving variable bathymetry.

At first order, the scattered wave coefficient in (4.3) is simply

αm = 2
J ′

m(ka)

H ′
m(ka)

cos mθI , m = 0, 1, 2, 3, . . . . (6.1)
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At second order, the free wave satisfies the boundary condition on the cylinder

∂ξH



∂r
= −∂ξP




∂r
, r = a, 0 � θ � π, 
 = 0, 1, 2, 3 . . . , (6.2)

and along the coast.
Using the partial wave expansions for the plane waves, we rewrite ξP


 as

ξP

 = LM




∞∑
m=0

εmimJm(2kr)2 cos mθI cos mθ + LN



∞∑
m=0

εmimJm(2kr cos θI ) cos mθ, (6.3)

where LM

 and LN


 are defined in (4.26). Using (4.23) for ξH

 and applying (6.2), we

obtain

α̂
,m = −2imLM



J ′
m(2ka)

K ′
m(κ
a)κ


2k cos mθI − imLN



J ′
m(2ka cos θI )

K ′
m(κ
a)κ


2k cos θI . (6.4)

It follows that

ξH

 =

∞∑
m=0

−εmimKm(κ
r) cos mθ2k

[
LM




2J ′
m(2ka)

K ′
m(κ
a)κ


cos mθI

+ LN



J ′
m(2ka cos θI )

K ′
m(κ
a)κ


cos θI

]
. (6.5)

The corresponding potential ΦH is

ΦH =

∞∑

=0

ig

2ω

cos κ
 (z + h)

cos κ
h
e−i2ωt

∞∑
m=0

εmimKm(κ
r) cos mθ

×
[
LM




J ′
m(2ka)

K ′
m(κ
a)κ


4k cos mθI + LN



J ′
m(2ka cos θI )

K ′
m(κ
a)κ


2k cos θI

]
+ ∗. (6.6)

Together with the analytical formula (4.29) for ξ
Q

 , the amplitude of the second-

order displacement ζ
(2)
2 (r, θ, t) (cf. (3.13)) is

η
(2)
2,2(r, θ) =

∞∑

=0

∞∑
m=0

εm cosmθ

{
imLM


 2 cos mθI

[
Jm (2kr) − 2k

κ


J ′
m (2ka)

K ′
m (κ
a)

Km (κ
r)

]
+ imLN




[
Jm (2kr cos θI ) − 2k cos θI

κ̂


J ′
m (2ka cos θI )

K ′
m (κ
a)

Km (κ
r)

]
+

∫ ∞

a

r0 dr0

[
− i

2ωQm (r0)

A
,


]
Km(κ
r>)

[
I ′
m (κ
a)

K ′
m(κ
a)

Km(κ
r<) − Im(κ
r<)

]}
.

(6.7)

Combined with (2.11), the second-order free-surface height is completely determined.
When the incident wave is parallel to the coastline, the problem is identical to a

plane wave scattered by a full cylinder in an open sea. (The first-order incident and
reflected waves are in the same direction so that their total amplitude is 2A.) This
closed-form solution should be equivalent to the result of Chau & Eatock Taylor
(1992). As a check for correctness and accuracy, we have compared our numerical
results with earlier works for the case of θI = 0, r/a = 1, h/a = 1, ω2a/g = 2, as plotted
in figure 3 by Chau & Eatock Taylor (1992). The agreement is excellent (Chen 2005).
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m, n ka = 0.1 ka = 1 ka = 0.5 ka = 10

θI = π 6, 7 10, 11 23, 19 34, 26
θI = 5π/4 6, 7 10, 11 22, 19 34, 27
θI = 3π/2 5, 6 10, 10 21, 18 35, 27

Table 1. Number of terms (m, n) used in the double series for Q.
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Figure 2. Dimensionless amplitudes of first-order |η/A| along the semi-circular peninsula
for three angles of incidence θI = π(––), 5π/4 (–·–), 3π/2(− − −), and four cylinder radii:
(a) ka = 0.1, (b) ka = 1, (c) ka = 5 and (d) ka = 10. Depth is fixed kh = 1.

6.2. Effects of incidence angle and cylinder radius

We have carried out a number of computations to study the effects of incidence angle
and the cylinder radius. For brevity only the free-surface displacements (run-up)
along the circumference of the cylinder are shown for a fixed depth-to-wavelength
ratio kh = 1. Three angle of incidences : θI = π (glancing), 5π/4 (oblique) and 3π/2
(normal) and four radius-to-wavelength ratios are considered.

In computing the double series of Q defined in (4.14) and (4.15), both m and n must
be truncated after a finite number of terms. These numbers are found by numerical
experiments for a fixed error allowance, chosen to be 10−5. As shown in table 1,
the numbers increase for larger ka. In addition, the integral for the propagating
mode 
 = 0 in (6.7) is evaluated by sectioning the integration path. Over one section
from a to a finite but large R, numerical integration is performed by the Gaussian
three-points adaptive method. In the remaining section from R to ∞, asymptotic
approximations are used, as in Chau & Eatock Taylor (1992).

To help understand the second-order results, we first display in figure 2 the first-
order run-up along the cylinder. As is well known, for the smallest cylinder ka = 0.1,
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Figure 3. Dimensionless amplitudes of second-order η
(1)
2,0/(4kA2) along the semicircular

peninsula, for different angle of incidence θI = π(—-), 5π/4 (–·–), 3π/2(− − −), and four
cylinder radii: (a) ka = 0.1, (b) ka =1, (c) ka = 5 and (d) ka = 10. Depth is fixed at kh = 1.

the run-up is uniform in all directions, and the effect of incidence angle is small.
As the cylinder radius increases relative to the wavelength, the effect of incidence
angle becomes more pronounced. For glancing incidence, the runup is the greatest
on the incidence side (small θ), and the smallest in the shadow (θ ≈ π). For normal
incidence, the run-up varies strongly in different directions with the greatest run-up at
the corners (θ = 0, π). The directional variation is oscillatory and symmetrical about
the shore-normal axis. With increasing ka, oscillations become more prominent.

The second-order set-up and set-down along the semicircle is shown in figure 3.
This quantity is the time-averaged part of the Bernoulli effect on the free surface (cf.
(2.10) and (3.10)). For the smallest cylinder, the maximum set-down occurs in the
direction θ = π/2, being the largest for glancing incidence and smallest for normal
incidence. With increasing ka, the set-up and set-down vary with direction in ways
similar to the first-order first-harmonic run-up. The largest mean set-up occurs near
θ =0.

The second-harmonic run-up contains two parts (cf. (2.10)). The part due to the first-
order interations (cf. (3.12) is shown in figure 4. For glancing incidence, the greatest
run-up is at θ = π/2 for the smallest cylinder, but near the corner facing the incoming
wave for the largest cylinder. For normal incidence, the run-up is oscillatory in θ and
symmetrical with respect to the axis θ = π/2, similar to the first-order first-harmonic
run-up. The part due to second-order potential is shown in figure 5. For glancing
incidence, the greatest response appears at θ =0 for the smallest cylinder, but near
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Figure 4. As figure 3, but for |η(1)
2,2|/(2kA2).
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Figure 5. As figure 3, but for |η(2)
2,2|/(2kA2).
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Figure 6. As figure 3, but for |η(2)
2,2 + η

(1)
2,2|/(2kA2).

θ = π/2 for the larger cylinders. The total second-harmonic run-up is also shown in
figure 6. The relative magnitudes and phases between η

(1)
2,2 and η

(2)
2,2 depend on θ . The

magnitudes of two parts in the total second-harmonic run-up are comparable.

7. A cylinder on top of a semicircular shoal
We now apply the theory for an example combining diffraction and refraction.

Consider a semicircular cylinder with radius 20 m standing at the centre of a
semicircular shoal next to a straight and cliff-like coast. The top of the shoal is
a flat semicircle of radius 20 m at depth 20 m. The sea depth increases monotonically
with r until r =300 m, outside of which the surrounding sea has the greater constant
depth of 40 m. The radial variation of the sea depth is given by

h =


20 m, r � 20 m

30 − 10 cos

[
π

280
(r − 20)

]
m, 20 m � r � 300 m.

(7.1)

The frequency is chosen to be ω = 0.6873 rad s−1 such that kh = 2 in the open sea
where h = 40 m. At depth h = 20 m the local wavenumber is increased to kh = 1.1697.
Two incidence angles (θI = π (glancing) and 3π/2 (normal)) are considered.

In the hybrid-element scheme, finite elements are used to discretize the shoal,
r < a =300 m, 0 < θ < π, outside which (ΩF : r > 300 m, 0 < θ < π) the solution is
analytical. Numerical accuracy of the first-order computations depends on the number
of finite-element nodes NP (or the grid size), and the number of angular modes Nα

included in the scattered waves. We have tested two finite-element grids: coarse
grid with NP = 73 040 and fine grid with NP =175 625. Let k0 = 0.05 m−1 denote
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Figure 7. The first-order amplitude, |η|/A, over a semicircular shoal around a cylinder.
(a) Glancing incidence. (b) Normal incidence.

the incident wavenumber at h = 40 m. The maximum element size Le is such that
k0Le = 0.08 for the coarse grid, and 0.05 for the fine grid. The corresponding ratios of
Le to wavelength are quite small: 0.012 and 0.008, respectively. For either grid, the
solution converges to six decimal places if the number of angular modes is Nα = 21
or more. Using 201 angular modes in the outer region, the amplitude for normal
incidence at one sample point η(x = 0 m, y = 20 m)/A is 0.49802 (coarse) and 0.49824
(fine); the relative error is approximately 4×10−4. Our first-order results are obtained
with the fine grid and Nα = 201.

For the second-order problems, we use NP =175 625 (fine grid) and Nα̂ = 91 (number
of angular modes) based on several tests. To limit the number of evanescent modes
in the l series, we use the following Domb–Sykes extrapolation scheme. By defining
the truncated sum as

y(l) =

l∑

=0

ξ
, (7.2)

By plotting y(l) vs. 1/l, the final result is obtained from the limit of 1/l = 0. Choosing
just two values l and l + 1, the limit by linear extrapolation gives

y(∞) = y(l+1) − l
[
y(l) − y(l+1)

]
. (7.3)
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Figure 8. The second-order set-down/set-up, |η(1)
2,0|/4k0A

2, details as figure 7.

We test the number Nξ of evanescent modes required, based on the numerical results
with l = Nξ − 1 and l + 1 =Nξ in the Domb–Sykes method to extrapolate y(∞). At

the sample point (x = 20 m, y = 0 m) the numerical results for η
(2)
2,2/2kA2 are found to

be 1.9060 for Nξ = 3 and 1.9117 for Nξ =4. The complex computer algorithm has
been checked satisfactorily with the analytical solution of § 6 by using a ring of finite
elements surrounding the peninsula (Chen 2005).

We now discuss the numerical results displayed below only for the shoaling region:
r � a = 300 m, 0 <θ < π.

The first-order free-surface amplitudes |η|/A for glancing and normal incidences are
shown in figure 7. For glancing incidence, the problem is equivalent to a full cylinder
on a circular shoal in the open sea, attacked by an incident wave of amplitude 2A

propagating from left (x ∼ ∞) to right (x ∼ − ∞). If the cylinder were absent, the
incident rays would enter the shoal first and then bend toward the centre of the shoal;
the amplitude would grow slowly towards the orgin. On the lee side, rays would be
reflected from the coast and intersect with those incident rays farther away from
the coast, resulting in constructive interference and greater amplitude (these features
are seen from computed results omitted here). With a cylinder of fairly large radius
k0a =1 where k0 is the wavenumber at h = 40 m, strong back-scattering results, as
indicated by the wavy envelope in figure 7(a). On the shadow side, only a mild increase
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Figure 9. The second-harmonic amplitude computed from the first-harmonic, |η(1)
2,2|/2k0A

2,
details as figure 7.

with r is seen owing to the constructive inteference between incident and reflected
rays which are not intercepted by the cylinder. All variations gradually diminish far
outside the shoal not shown here. For normal incidence without the cylinder, the plot
of |η/A| would resemble that of a simple standing wave with nodal and antinodal
lines parallel to the x-axis. Now scattering from the cylinder adds modulations in all
directions as is evident in figure 7(b).

The second-order set-up/set-down of the mean sea level is shown in figure 8 for two
incidence angles. Depending solely on the first-order result, the qualitative features
resemble those of figure 7. For reference, we recall that the mean sea-level of a
progressive wave of amplitude 2A on a sea of constant depth is negative and hence a
pure set-down η

(1)
20 = − 4kA2/2 sinh 2kh. On the other hand, the mean sea-level under

a simple standing wave over a horizontal seabed is,

η20 = kA2

[
ω2

gk
cos2 ky − gk

ω2
sin2 ky

]
=

kA2

2

1

tanh kh
[−(1 − tanh2 kh) + cos 2ky(1 + tanh2 kh)], (7.4)
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Figure 10. The second-order amplitude computed from the second-harmonic, |η(2)
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details as figure 7.

which follows from (3.11) by taking η = A cos ky. Unlike the simple progressive,
wave, the maximum set-up occurs along the lines 2ky = 0, 2π, 4π, . . . where
|η| = A| cos ky| =A is also the greatest. The maximum set-down occurs at
2kx = π, 3π, 5π, . . . , where |η| = A| cos ky| = 0 is the smallest. These features are
qualitatively preserved in the numerical results, as can be seen from figure 8(b).
In particular, the mean sea-level along the coast is positive everywhere.

The second-order second-harmonic amplitude has two parts. Figure 9 shows for
two incidence angles, |η(1)

2,2|/2k0A
2 computed from the first-order potential Φ1. The

corresponding maximum amplitude of ζ
(1)
2 is 2|η(1)

2,2|, hence 2k0A
2 is used as the

normalizing scale. The variations again resemble those of the first-order amplitude.
Completing the second-order solution is the part η

(2)
2,2 associated with Φ2, shown

in figures 10. Note that, for both incidence angles, the spatial undulations are much
more rapid, because the characteristic wavenumber is now κ̂0 which is nearly four
times the magnitude of k (see (3.21)). As a consequence, the magnitude of the sum of
the two complex amplitudes |η(1)

2,2 + η
(2)
2,2| oscillates nearly twice as fast in space, as is

shown in figure 11 after accounting for the phases of the two components.
Finally, we compare the free-surface heights along the circumference of two

cylinders of the same radius, r = ra = 20 m: one on a sea of constant depth (40 m)
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Figure 11. The total second-order amplitude, |η(1)
2,2 + η
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2,2|/2k0A

2, details as figure 7.

according to § 6, and the other on top of a shoal just discussed. The incident wave
has the same frequency ω =0.6873 rad s−1 so that k0h0 = 2 in the sea. Note first by
comparing figure 12(a)–12(d) with figures 2(b), 3(b), 4(b), 5(b) and 6(b) that the results
on the cylinder for two different constant depths (k0h0 = 1, 2) are qualtitatively similar;
this is probably because the value of k0ra = 1 is the same in both examples. Secondly,
for both incidence angles, shoaling tends to increase mildly the first-order amplitude
|η| as well as |η(1)

2,2|, but to decrease the mean sea-level |η(1)
2,0|, all of which depend solely

on the first order. However, the part |η(2)
2,2| is considerably more enhanced by shoaling.

8. Concluding remarks
We have extended the ideas behind the mild-slope equation, developed previously

for linearized problems of water-wave diffraction and refraction, to account for
nonlinearity up to second order in wave steepness. In the case of uniform depth, the
second-order diffraction is governed by a set of uncoupled two-dimensional Helmholtz
equations with forcing. An analytical solution is given for a semi-circular peninsula. A
hybrid-element method is described for the second-order refraction/diffraction over
a slowly varying bathymetry. Numerical results are demonstrated for the diffraction
of a cylinder resting on top of a semi-circular shoal. Applications have been made
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2).

to other geometries such as pure shoaling without a scatterer and a harbour behind
a shoal (Chen 2005). In past studies, the phenomenon of ringing near an offshore
tower has been attributed to third-order effects (Faltinsen, Newman & Vinje 1995).
The ideas here can, in principle, be extended to third-order analysis for a tower on a
slowly varying seabed, with of course increased algebraic and numerical complexity.
Nevertheless, the advantage of this approach that discrete computations are required
only for two horizontal coordinates, would probably be even more preferable since
refraction usually involves a large domain extending over many wavelengths in all
horizontal directions. The fully three-dimensional alternative via either boundary
elements or finite elements covering the entire region of variable boundary and
bathymetry would appear to be extremely cumbersome and demanding. On the other
hand, extending the three-dimensional treatment of Yue et al. (1978) and Kim &
Yue (1989) only near the structure, and matching with the quasi-two-dimensional
mild-slope approximation for the much larger zone of variable depth, may simplify
the numerical task considerably.

We point out that the present theory is an extension of Stokes approximation,
which is inherently limited to a small Ursell–Stokes parameter (A/k2h3 � 1). For very
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shallow water waves propagating over long distances, we must use Boussinesq or
other appropriate approximations expressly devised for small kh.

Finally, for treating slow-drift motions of floating platforms or long-period
oscillations in harbours, it is necessary to consider nonlinear effects due to random
incident waves of broad frequency band. The present theory can be extended to
facilitate the analysis, as will be reported in the near future.

The authors thank the US Office of Naval Research (Grant N00014-04-1-0077),
US National Science Foundation (Grant CTS-0075713) and the US–Israel Binational
Science Foundation (Grant 200405) for their financial support of this study.

Appendix A. Derivation of second-order mild-slope equation
We outline the derivation by following the procedure of Smith & Sprinks (1975)

for the linearized homogeneous problem with the frequency ω. Except for the
inhomogeneous term, and the change of frequency to 2ω, the result is similar to
that of Porter & Staziker (1995) derived by a different method for the first-order
problem.

The function ψ(x, y, z) satisfies

∇2ψ +
∂2ψ

∂z2
= 0, −h(x, y) < z < 0, (A 1)

∂ψ

∂z
= −∇ψ · ∇h, z = −h(x, y), (A 2)

∂ψ

∂z
− 4ω2

g
ψ = F, z = 0. (A 3)

Let us introduce

fm =
cos κm(z + h)

cos κmh
(A 4)

which satisfies

∂2fm

∂z2
+ κ2

mfm = 0, −h < z < 0, (A 5)

∂fm

∂z
= 0, z = −h, (A 6)

∂fm

∂z
− 4ω2

g
fm = 0, z = 0, (A 7)

where κm, m =0, 1, 2, . . . are defined by (3.20) and κo = −iκ̂0 is defined by (3.21).
Regarding (A 1) as an ordinary differential equation in z and applying Green’s

formula to fm and ψ , we obtain, after using (A 1)–(A 7),∫ 0

−h

(
−ψκ2

mfm + fm∇2ψ
)
dz = − (fm)z=0 F − (fm∇ψ · ∇h)z=−h . (A 8)

With the assumption,

ψ = − ig

2ω

∞∑

=0

ξ
(x, y)f
(x, y, z), (A 9)
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(A 8) becomes

∞∑

=0

{
−ξ
κ

2
mg

∫ 0

−h

fmf
 dz + ξ
g

∫ 0

−h

fm

∂f


∂h
∇2 dz + ξ
g

∫ 0

−h

fm

∂2f


∂h2
(∇h)2 dz

+ (∇2ξ
)g

∫ 0

−h

fmf
 dz + (∇ξ
) ·
(

g

∫ 0

−h

2fm

∂f


∂h
∇h dz

)}
= −2iωF −

∞∑

=0

{[
ξ
gfm

∂f


∂h
(∇h)2 + (∇ξ
) · (gfmf
∇h)

]
z=−h

}
. (A 10)

After using Leibniz’ rule,

∇ ·
(∫ 0

−h

fmf
∇ξ
dz

)
=

∫ 0

−h

fmf
∇2ξ
 dz +

∫ 0

−h

fm

∂f


∂h
∇h · ∇ξ
 dz

+

∫ 0

−h

f


∂fm

∂h
∇h · ∇ξ
 dz +(f
fm∇ξ
 · ∇h)z=−h , (A 11)

(A 10) can be written as

∞∑

=0

{
ξ


(
−κ2

mg

∫ 0

−h

fmf
 dz

)
+ ∇ ·

[
(∇ξ
)

(
g

∫ 0

−h

fmf
 dz

)]
+

∫ 0

−h

g

(
fm

∂f


∂h
− f


∂fm

∂h

)
∇h · ∇ξ
 dz +

∫ 0

−h

gfm

∂f


∂h
ξ
∇2h

+

∫ 0

−h

gfmξ


∂2f


∂h2
(∇h)2 dz + g

[
fmξ


∂f


∂h
(∇h)2

]
z=−h

}
= −i2ωF . (A 12)

Equation (A 12) can be simplified to the form

∞∑

=0

{∇ · (Am,
∇ξ
) + Bm,
∇h · ∇ξ
 + Cm,
ξ
} = −i2ωF (A 13)

where

Am,
 = g

∫ 0

−h

(fmf
) dz, (A 14)

Bm,
 = g(Um,
 − U
,m), (A 15)

Um,
 =

∫ 0

−h

(
fm

∂f


∂h

)
dz, (A 16)

Cm,
 = −κ2
mAm,
 + gUm,
∇2h + gVm,
 (∇h)2 (A 17)

and

Vm,
 =

∫ 0

−h

(
fm

∂2f


∂h2

)
dz +

[
fm

∂f


∂h

]
z=−h

. (A 18)

Using Leibniz’ rule, we can rewrite Vm,
 as

Vm,
 =
∂

∂h

∫ 0

−h

(
fm

∂f


∂h

)
dz −

∫ 0

−h

(
∂fm

∂h

∂f


∂h

)
dz

=
∂Um,


∂h
−

∫ 0

−h

(
∂fm

∂h

∂f


∂h

)
dz. (A 19)
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By using the orthogonality of the vertical eigenfunctions {fm}, Am,
 is found as
given by (3.23). After straightforward but lengthy algebra (Chen 2005), we obtain the
coefficients given explicitly by (3.25) to (3.28).

Appendix B. Equivalence to Stokes waves
We show here that (4.27) and (4.28) are equivalent to Stokes waves of the following

standard form:(
ΦI

2

ΦR
2

)
Stokes

= −3iω

4

cosh 2k (z + h)

sinh4 kh

A2

4
exp(i2kr cos(θ ∓ θI ) − 2iωt) + ∗, (B 1)

(
ΦIR

2

)
Stokes

= − iA2ω

2g

1 + 2 cos 2θI − 3 tanh2 kh

tanh kh [2 cos θI tanh (2kh cos θI ) − 4 tanh kh]

× cosh[2k(z + h) cos θI ]

cosh(2kh cos θI )
exp(i2kr cos θI cos θ − 2iωt) + ∗. (B 2)

To show this, we first obtain from (3.16),

β̂ − β̄k2 =
3ωk

sinh kh cosh kh
, β̂ − β̄k2 cos(2θI ) =

ikω

tanh kh
[1 + 2 cos(2θI ) − 3 tanh2 kh].

(B 3)

The Stokes wave potential can be rewritten as(
ΦI

2

ΦR
2

)
Stokes

= −
[

cosh kh

4k sinh3 kh
cosh 2k (z + h)

]
× (β̂ − β̄k2)

A2

4
exp(i2kr cos (θ − θI ) − 2iωt) + ∗, (B 4)

(ΦIR
2 )Stokes = − iA2ω

2g

β̂ − β̄k2 cos(2θI )

[2 cos θI tanh(2kh cos θI ) − 4 tanh kh]

× cosh[2k(z + h) cos θI ]

cosh(2kh cos θI )
exp(i2kr cos θI cos θ − 2iωt) + ∗. (B 5)

Let us expand cosh 2k(z + h) and cosh [2k(z + h) cos θI ] in terms of the vertical
eigenfunctions

cosh 2k (z + h) =

∞∑

=0

a
f
, cosh [2k(z + h) cos θI ] =

∞∑

=0

b
f
, (B 6)

where

f
 =
cos k
 (z + h)

cos κ
h
. (B 7)

By using the orthogonality of f
, the dispersion relation as well as the identities

2 tanh 2kh − 4 tanh kh = − 4 sinh3 kh

cosh kh cosh 2kh
, κ
 tan κ
h = −4ω2

g
= −4k tanh kh,

(B 8)
we obtain

a
 = − g

A
,


4k sinh3 kh

cosh kh

1

4k2 + κ2



, (B 9)
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b
 = − g

A
,


[2k cos θI tanh (2kh cos θI ) − 4k tanh kh] cosh (2kh cos θI )

(4k2 + κ2

 )

, (B 10)

where A
,
 is given by (3.23). The equivalence of (B 4) and (4.27) and of (B 5) and
(4.28) is evident.

Appendix C. Two-dimensional Green’s function
We define the Green function by

∇2G
 − κ2

 G
 =

1

r
δ(r − r0) [δ(θ − θ0) + δ(θ + θ0)] , r, r0 > a, (C 1)

∂G


∂θ
= 0, θ = 0, π, (C 2)

∂G


∂r
= 0, r = a. (C 3)

For the propagating mode 
 = 0, the usual (strong) radiation condition is required,

√
r

(
∂G0

∂r
− iκ̂0G0

)
→ 0, r → ∞. (C 4)

For the evanescent modes 
 =1, 2, 3, . . . , we require that

G
 → 0, r → ∞, 
 = 1, 2, 3, . . . . (C 5)

By the standard method of eigenfunction expansions, we obtain the following result,

G
 =
1

π

∞∑
m=0

εmg
m cos mθ cos mθ0 (C 6)

where

g
m(r, r0) =

[
I ′
m(κ
a)

K ′
m(κ
a)

Km(κ
r0) − Im(κ
r0)

]
Km(κ
r), r > r0, (C 7)

and

g
m(r, r0) =

[
I ′
m(κ
a)

K ′
m(κ
a)

Km(κ
r) − Im(κ
r)

]
Km(κ
r0), r < r0. (C 8)

Clearly, the Green function is symmetric: G
(r, θ; r0, θ0) = G
(r0, θ0; r, θ). Defining

r> = Max(r, r0), r< = Min(r, r0), (C 9)

we express the Green function in a more compact form,

G
(r>, r<) =

∞∑
m=0

ε


π

[
I ′
m(κ
a)

K ′
m(κ
a)

Km(κ
r<) − Im(κ
r<)

]
Km(κ
r>) cos mθ cos mθ0. (C 10)

REFERENCES

Agnon, Y. 1999 Linear and nonlinear refraction and bragg scattering of water waves. Phys. Rev. E
59, R1319–1322.

Athanassoulis, G. A. & Belibassakis, K. A. 1999 A consistent coupled-mode theory for the
propagation of small-amplitude water waves over variable bathymetry regions. J. Fluid Mech.
389, 275–301.



166 M.-Y. Chen and C. C. Mei

Bai, K. J. & Yeung, R. 1974 Numerical solutions of free-surface and flow problems. Proc. 10th
Symp. Naval Hydrodyn., Office of Naval Research, pp. 609–641.

Berkhoff, J. C. W. 1972 Computation of combined refraction–diffraction. Proc. 13th Conf. Coastal
Engng ASCE , vol. 1, pp. 471–490.

Chamberlain, P. G. & Porter, D. 1995 The modified mild-slope equation. J. Fluid Mech. 291,
393–407.

Chau, F. P. & Eatock Taylor, R. 1992 Second-order wave diffraction by a vertical cylinder. J. Fluid
Mech. 240, 571–599.

Chen, H. S. & Mei, C. C. 1974 Oscillations and wave forces in a man-made harbor in the open
sea. Proc. 10th Symp. Naval Hydrodyn. pp. 573–594.

Chen, M.-Y. 2005 Nonlinear refraction and diffraction of regular and random waves. PhD thesis,
Dept of Civil & Environmental Engineering, MIT.

Faltinsen, O. M., Newman, J. N. & Vinje, T. 1995 Nonlinear wave loads on a slender vertical
cylinder. J. Fluid Mech 289, 179–198.

Houston, J. R. 1981 Combined refraction and diffraction of short waves using the finite element
method. Appl. Ocean Res. 3 (4), 163–170.

Kim, M.-H. & Yue, D. K. P. 1989 The complete second-order diffraction solution for an axisymmetric
body. Part 1. Monochromatic incident waves. J. Fluid Mech. 200, 235–264.

Kirby, J. T. 1986 A general wave equation for waves over rippled beds. J. Fluid Mech . 162, 171–186.

Longuet-Higgins, M. S. 1950 The theory of the origin of microseisms. Phil. Trans. R. Soc. Lond .
A 243, 1–35.

Massel, S. R. 1993 Extended refraction–diffraction equation for surface waves. Coastal Engng. 19,
97–126.

Mei, C. C. 1989 The Applied Dynamics of Ocean Surface Waves . World Scientific.

Miles, J. W. & Chamberlain, P. G. 1998 Topographical scattering of gravity waves. J. Fluid Mech .
361, 175–188.

Porter, D. & Staziker, D. J. 1995 Extensions of the mild-slope equation. J. Fluid Mech. 300,
367–382.

Smith, R. & Sprinks, T. 1975 Scattering of surface waves by a conical island. J. Fluid Mech. 72,
373–384.

Yue, D. K. P., Chen, H. S. & Mei, C. C. 1978 A hybrid element method for diffraction of water
waves by three-dimensional bodies. Intl. J. Numer. Meth. Engng. 12, 245–266.


